EMF-MEASUREMENTS WITH GALVANIC BROMINE CELLS IN THE SYSTEMS RBr/MBr, (M= Sr, Ba)

M. Paul and H.J. Seifert

INORGANIC CHEMISTRY, UNIVERSITY Gh KASSEL, F.R.G.

The systems RbBr/SrBr₂ and RbBr/BaBr₂ were reinvestigated by DTA and X-ray-crystallography. Additionally to the known compounds RbSrBr₃, RbSr₂Br₅ and RbBa₂Br₅, the phases Rb_{2.23}Sr_{0.885}Br₄ and Rb_{2.13}Ba_{0.935}Br₄ were found, which are structural related to the Th₃P₄- type. By EMF-measurements the thermodynamic functions ΔG , ΔH and ΔS were determined for all compounds.

During the last decade we have measured thermodynamic functions of double chlorides $A_n MCl_{n+x}$ (A=Na,K,Rb; M=M²⁺ and M³⁺) using a self-developed galvanic chlorine cell for solid electrolytes [1]. 1987 we could present a poster at ESTAC IV in Jena, concerning measurements with an equivalent bromine cell in the systems KBr/MBr₂ (M=Sr,Ba) [2]. In continuation of this work we now present the results for the Rb-compounds in the analogous systems RbBr/MBr₂.

The utilized cells have the general set-up

 $(graphite + Br_2)/RbBr/Rb^+$ -conducting glass / MBr₂/(graphite + Br₂) for the formation reaction of the MBr₂-richest compound in the system. The EMF-(E) is related to the free (Gibbs) enthalpy ΔG by $\Delta G = -n \cdot F \cdot E$ (n=transported charge; F=Faraday constant). The temperature dependence of ΔG proved to be linear in the temperature-region, in which the EMF's could be approached in up to 10 h (250°C). So linear regression-calculations yielded directly the Gibbs-Helmholtz relation $\Delta G=\Delta H-T\cdot\Delta S$.

Details of the material preparation, the procedure of the measurements (DTAand X-ray-measurements for checking the phase diagrams $RbBr/SrBr_2$ and $RbBr/BaBr_2$, solution calorimetry for yielding the enthalpies for the reactions $nRbBr+MBr_2=Rb_nMBr_{n+2}$) and a detailed description of the galvanic cell can be found in [2].

The system RbBr/SrBr,

According to Riccardi et al [3] two congruently-melting compounds are existing: $RbSr_2Br_5$ and $RbSrBr_3$. By our own investigations this finding must be completed in two points (fig. 1):

- 1) The compound RbSrBr₃ is stable only at temperatures higher than 350°C, indicated by a strong endothermic effect in heating curves. In cooling curves, no effect could be detected; nevertheless RbSrBr₃ can't be yielded metastable at ambient temperature by quenching. Additionally, two transitions occur at 472 and 551°C. The thermal effects are small without a hysteresis between cooling and heating curves - these transitions must be displacive.
- 2) There is existing a third solid phase, $Rb_{2.23}Sr_{0.885}Br_4$, proved by the fact that the formation- and transition-effects for $RbSrBr_3$ are disappearing between 29 and 28 mol-X $SrBr_2$. A solid of this composition displays a new X-ray- pattern which can be derived from the Th_3P_4 -type. The compound does not decompose by normal cooling under DTA conditions; after annealing for two days at ~270°C a strong endothermic effect, corresponding to its formation, is found at 290°C in heating curves.

EMF-Measurements

a) The compound $Rb_{0.5}SrBr_{2.5}(RbSr_2Br_5)$ ΔG^r for the reaction 0.5 RbBr + SrBr₂ = $Rb_{0.5}SrBr_{2.5}$ n=0.5 (ΔG^r is identical with ΔG^f , the free enthalpy for the formation from the two binary compounds). Two samples with 90 and 75 mol-% SrBr₂ resp.; temperature range = 530-750 K. \overline{EMF}/mV = 194.6 - 0.0178 T/K Range of error ± 3.0 ± 0.007 $\Delta G^r/kJ$ mol⁻¹ = -9.4 + 0.0009 T/K

b)The compound RbSrBr₃

 $\Delta G^{r} \text{ for the reaction } 0.5 \, \text{RbBr} + \, \text{Rb}_{0.5} \text{SrBr}_{2.5} \qquad \text{n=}0.5$ Two samples with 60 and 65 mol-% SrBr₂ resp.; temperature range 630-720K

 $\overline{EMF}/mV = -204.2 \pm 0.3349 \cdot T/K$ Range of error $\pm 9.0 \pm 0.02$ $\Delta G^{r}/kJ \cdot mol^{-1} = 9.8 - 0.0162 \cdot T/K$ For the reaction RbBr+SrBr₂=RbSrBr₃; $\Delta G^{f}/kJ \cdot mol^{-1} = 0.4 - 0.0153 \cdot T/K$

- c) The phase $Rb_{2.52}SrBr_{4.52}(Rb_{2.23}Sr_{0.885}Br_4)$ For this phase two reactions have to be considered: 1) The formation from $RbSr_2Br_5$ in the temperature range ~(550-625)K and 2) The formation from $RbSrBr_3$ at T>625K. The experiments revealed that the measurements could be carried out down to 540K, because $RbSrBr_3$ remained metastable.
- a) ΔG^{r} for the reaction 2.02 RbBr+Rb_{0.5}SrBr_{2.5}= Rb_{2.52}SrBr_{4.52} n= 2.02 Two samples with 45 and 60 mol-% SrBr₂ resp.; temperature range 530-630 K. $\overline{EMK}/mV = -47.7+0.0864$ T/K Range of error $\pm 5.0 \pm 0.01$ $\Delta G^{r}/kJ \cdot mol^{-1}= 9.3-0.0168 \cdot T/K$ For 2.52 RbBr+SrBr₂= Rb_{2.52}SrBr_{4.52}; $\Delta G^{f}/kJ \cdot mol^{-1}= -0.1-0.0159 \cdot T/K$
- b) $\Delta G^{\mathbf{r}}$ for the reaction 1.52 RbBr₂+RbSrBr₃= Rb_{2.52}SrBr_{4.52} n=1.52 Sample with 45 mol-% SrBr₂; temperature range 530-770 K EMK/mV = 9.9-0.0042 T/K Range of error $\pm 0.5 \pm 0.0008$ $\Delta G^{\mathbf{r}}/kJ \cdot mol^{-1}$ = -1.45+0.0006 T/K For 2.52 RbBr+SrBr₂= Rb_{2.52}SrBr_{4.52}; $\Delta G^{\mathbf{f}}/kJ \cdot mol^{-1}$ = -1.0-0.0147 T/K The conformity of the two $\Delta G^{\mathbf{f}}$ -equations for the reaction cycles a) and b) is satisfactory.

Solution calorimetry

For the only compound stable at room temperature, $RbSr_2Br_5$, ΔH^f was also determined by solution calorimetry.

588

Measured solution enthalpies: $\Delta H_{298}^{l} (\frac{1}{2} \text{ RbSr}_2 \text{Br}_5) = -49.7 \pm 0.3 \text{ kJ} \cdot \text{mol}^{-1}$ Literature values: $\Delta H_{298}^{l} (\text{RbBr}) = 23.0 \text{ kJ} \cdot \text{mol}^{-1}$ [7]

 $\Delta H_{298}^{l}(SrBr_{2}) = 70.4 \text{kJ} \cdot \text{mol}^{-1}$ [8]

 $\Delta H_{298}^{f}(^{1}/_{2} RbSr_{2}Br_{5}) = \{\Delta H^{1}(SrBr_{2}) + ^{1}/_{2} \Delta H^{1}(RbBr)\} - \Delta H^{1}(Rb_{0.5}SrBr_{2.5}) = -9.1 kJ \cdot mol^{-1}$ This value is in good correspondence with the -9.4 kJ · mol⁻¹ found with EMF-measurements.

Thermodynamic stabilities and free enthalpies of synproportionation ΔG^{S}

At ambient temperature only $RbSr_2Br_5$ is stable; thus $\Delta G^r(\equiv \Delta G^f) = \Delta G^s$. From $\Delta G^r/kJ \cdot mol^{-1} = -9.4 + 0.0009 \cdot T/K$ follows: $\Delta G^s_{298} = -9.1 kJ \cdot mol^{-1}$. For the phase $Rb_{2.52}SrBr_{4.52}$ beneath 630 K is $\Delta G^r \equiv \Delta G^s$ (Reaction 2.02 $RbBr+Rb_{0.5}SrBr_{2.5} = Rb_{2.52}SrBr_{4.52}$). With $\Delta G^r/kJ \cdot mol^{-1} =$ 9.3-0.0168 $\cdot T/K$ follows $\Delta G^r = 0$ at 553 K (280°C). That is the thermodynamic temperature of formation (decomposition).

RbSrBr₃ is formed from its neighbour compounds by the synproportionation:

 $0.248 \text{ Rb}_{2.52} \text{SrBr}_{4.52} + 0.752 \text{ Rb}_{0.5} \text{SrBr}_{2.5} = \text{ RbSrBr}_{3}$

With the $\Delta G^{\mathbf{f}}\text{-values}$ of all three compounds $\Delta G^{\mathbf{s}}$ can be calculated:

 $\Delta G^{s}(RbSrBr_{3})/kJ \mod^{-1} = 7.8 - 0.0124 \cdot T/K$

With $\Delta G^{s}=0$ a formation (decomposition) temperature of 629K (356°C) results.

The system RbBr/BaBr₂

According to older investigations two compounds are existing: the incongruently melting $RbBa_2Br_5$ and a congruently melting compound with the composition Rb_2BaBr_4 [3] or $Rb_{2-2x}Ba_{1+x}Br_4$ [4] resp.. Our own DTA- and X-ray-measurements could confirm the existence of $RbBa_2Br_5$, but revealed that the second compound, which has a transition near the melting point, again is a Th_3P_4 -related compound with the composition $Rb_{2.13}Ba_{0.935}Br_4$ (fig. 1). With DTA no decomposition could be detected, neither after long annealing at temperatures between 150 and 300°C.

EMF-measurements

- a) The compound $Rb_{0.5}BaBr_{2.5}(RbBa_2Br_5)$ ΔG^r for the reaction 0.5 RbBr+BaBr_2= $Rb_{0.5}BaBr_{2.5}$ n=0.5 Two samples with 75 and 80 mol-% SrBr₂ resp.; temperature range 540-680 K $\overline{EMF}/mV = -2.77 + 0.0640 \cdot T/K$ Range of error $\pm 1.0 \pm 0.002$ $\Delta G^r/kJ \cdot mol^{-1} = 0.1 - 0.0031 \cdot T/K$ It is $\Delta G^r \equiv \Delta G^f$ and at ambient temperature $\Delta G^r \equiv \Delta G^s$ From solution calorimetry instead of $\Delta H^1 = 0.1 \, kJ \cdot mol^{-1}$ a $\Delta H^r_{298} = 2.9 \, kJ \cdot mol^{-1}$ was found. $(\Delta H^1_{298}(BaBr_2) = -23.5 \, kJ \cdot mol^{-1}$ [8]; $\Delta H^1_{298}(1/2 \, RbBa_2Br_5) = -14.9 \, kJ \cdot mol^{-1}$).
- b) The compound $Rb_{2.28}BaBr_{4.28}(Rb_{2.13}Ba_{0.935}Br_4)$ ΔG^r for the reaction 1.78 RbBr+Rb_{0.5}BaBr_{2.5} = Rb_{2.28}BaBr_{4.28} n=1.78 Two samples with 40 and 55 mol-% SrBr₂ resp.; temperature range 540-740 K $\overline{EMF}/mV = -29.1+0.0666 \cdot T/K$ Range of error: + 2.0±0.002 $\Delta G^r/kJ \cdot mol^{-1} = 5.0-0.0114 \cdot T/K$

It is $\Delta G^{\mathbf{r}} \equiv \Delta G^{\mathbf{s}}$; consequently with $\Delta G^{\mathbf{r}} = 0$ the temperature of formation (decomposition) is calculated as 438 K (165°C). For the reaction 2.28 RbBr+SrBr= Rb_{2.28}SrBr_{4.28}; $\Delta G^{\mathbf{f}}/kJ \cdot \text{mol}^{-1} = 5.1 - 0.0145 \cdot T/K$

Crystal structures

According to a private communication of Jessen [4], $RbSr_2Br_5$ is crystallising with the $NH_4Pb_2Cl_5$ -structure [5] (R.G. $P2_1/c$) with the monoclinic cell parameters: a=9.431(8)Å; b=8.344(5)Å; c=13,303(6)Å; B=90.33°; Z=4. The same holds for $RbBa_2Br_5$: monoclinic cell with a=9.758(7)Å; b=8.571(6)Å; c=13.669(1)Å; B=90,01°; Z=4.

 $RbSrBr_3$ has three high-temperature modifications analogous to $RbCaBr_3$ [6]: it crystallizes from the melt with the cubic perovskite-structure, then a tetragonallydistorted perovskite structure follows and finally the orthorhombic $GdFeO_3$ -type results. All dates were calculated from Simon-Guinier-photos.

H-RbSrBr ₃ : 604-551°C	cubic: Pm3m	a= 5.921 Å;	Z=1
M-RbSrBr ₃ : 551-472°C	tetragonal; P4/mbm	a= 8.309Å;	c= 5.919 Å; Z=2
D-RbSrBr ₃ : 472-356°C	orthorhombic; Pnma	a= 8.328Å; b=	= 11.766Å; c= 8.223Å;Z=4

The structure of the third phase could not yet be solved, however, the pattern is similar to those of other phases $A_{2+2x}M_{1-x}X_4$, we previously have found with X=Cl for M= Sr,Ba,Pb [6] and with X=Br for A=K and M= Sr,Ba [2]. The structures of these phases are related to the Th₃P₄-type, according to Bärninghausen they are crystallising with incommensurable cells.

	∆G ^r (298 K)	=	ΔH ^r		(T·∆S)	
$1/_2 \text{RbSr}_2\text{Br}_5$	-9.1	=	-9.4		+03	
$1/_2$ K Sr ₂ Br ₅	-6.9	= 1	-6.9		± 0	
RbSrBr ₃	+5.1	=	+9.9		-4.8	
K Sr Br ₃	non existent					
Rb _{2.23} Sr _{0.885} Br ₄	+4.3	=	+9.3		-5.0	
K _{2.18} Sr _{0.01} Br ₄	+5.4	=	+11.2		-5.8	
¹ / ₂ RbBa ₂ Br ₅	-0.8	=	+0.1		-0.9	
$1/_2$ KBa ₂ Br ₅	non existent					
Rb _{2.13} Ba _{0.935} Br ₄	+1.6	n	+5.0		-3.4	
K _{2.04} Ba _{0.98} Br ₄	+4.9	=	+10.6		-5.7	

Table 1 Energy proportions $(kJ mol^{-1})$ for the formation of ternary bromides from ABr_2 and the right neighbour-compound at 298 K.

Discussion

As previously shown [2], there is a strong analogy between the features of double chlorides and bromides $K_n M X_{n+2}$ (M=Sr,Ba). A certain similarity also exist between K- and Rb-double bromides of the two alkaline earth metals; as the energy-values, compiled in table 1, demonstrate. However with potassium a 1:1-compound of strontium and a 1:2 of barium does not exist.

Thus, the same conclusions about thermodynamic stabilities can be drawn, as it was done with the potassium compunds.

Furthermore, a close awalogy between double chlorides and bromides Rb_nMBr_{n+2} (M=Br,Ba) exist (compare table 1 of this paper with table 2 in [2].

* * *

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- 1 H.J. Seifert, Thermochim.Acta 110 (1987) 297.
- 2 H.J. Seifert, G. Thiel, M. Stengert and S. Schaub, Thermochim.Acta, 122 (1987)
- 3 R. Riccardi, G. Sinistri, G.Vigano-Campari and A. Magistris, Z. Naturforsch. 25a (1970) 781.
- 4 S. Jessen, Diplomarbeit, Kiel 1988. S H.L. Keller, Z. Naturforsch. B31 (1976) 885.
- 6 H.J. Seifert, J. Warczewski and K. Burhenne, Rev. Chim. Miner. 20(1983) 504.
- 7 H.J. Seifert and D. Haberhauer, Z.anorg.allg.Chem. 491 (1982) 301.
- 8 Landolt-Börnstein, New Series IV, Vol. 2., (1975) pp. 15, 112.

Zusammenfassung – Die Systeme RbBr/SrBr₂ und RbBr/BaBr₂ wurden mittels DTA und Röntgenaufnahmen an Kristallpulvern neu untersucht. Zusätzlich zu den schon bekannten Verbindungen RbSrBr₃, RbSr₂Br₅ und RbBa₂Br₅ wurden die Phasen Rb_{2,23}Sr_{0,885}Br₄ und Rb_{2,13}Ba_{0,935}Br₄, die sich strukturell vom Th₃P₄-Typ ableiten lassen, neu gefunden. Für alle Verbindungen wurden durch EMK-Messungen in galvanischen Feststoffzellen die thermodynamischen Funktionen Δ G, Δ H und Δ S bestimmt. Резкие- Методом ДТА и рентгеновской кристалографии вновь были исследованы системы $RbBr/SrBr_2$ и $RbBr/BaBr_2$. В дополнение к ранее известным соединениям $RbSrBr_3$, $RbSr_2Br_5$ и $RbBa_2Br_5$, были найдены фазы $Rb_{2,23}Sr_{0,885}Br_4$ и $Rb_{2,13}Ba_{0,935}Br_4$, которые струйтурно связаны с соединением типа Th_3P_4 . С помощью эдс измерений для всех соединений были определены термодинамические функции ΔG , ΔH и ΔS .